Предки человека, от рыб до приматов, имели хвосты в течение примерно полумиллиарда лет. Рыбам хвост помогал рулить, приматам — цепляться за ветки. Но затем, примерно 25 миллионов лет назад, хвосты исчезли. Дарвин первым отметил это изменение в анатомии древних гоминидов. Но как и почему это произошло, оставалось загадкой.
Теперь исследователи, похоже, обнаружили изменение генов, которое привело к потере хвоста: странствующий фрагмент ДНК, который “перепрыгнул” в другой хромосомный домен (участок хромосомы) и изменил выработку белка, ключевого для развития хвоста. Заодно выяснилось, что генетический сдвиг имел и другой побочный эффект, менее заметный, но более опасный: возрос риск врожденных дефектов, затрагивающих спинной мозг. Работа опубликована как препринт в журнале BioRXiv.
Группа сотрудников Института генетических систем Нью-Йоркского университета обнаружила в гене TBXT (T-Box Transcription Factor T) короткую вставку ДНК — “элемент Alu”, которая присутствует у всех человекообразных обезьян, но отсутствует у других приматов. TBXT кодирует белок, называемый brachyury — по-гречески «короткий хвост», потому что мутации в нем, как выяснилось ранее, могут привести к появлению мышей с более короткими хвостами.
Генетические последовательности Alu способны перемещаться по геному и иногда называются прыгающими генами. Возможно, это остатки древних вирусов, они часто встречаются в геноме человека, составляя около 10% нашей ДНК. Иногда вставка Alu прерывает работу гена и препятствует выработке определенного белка; в других случаях элементы оказывают более сложное действие на экспрессию белков. Это делает прыгающие гены мощным источников эволюционных вариаций, поскольку они меняют генетический код.
Хотя на первый взгляд, обнаруженный у человекообразных обезьян прыгающий ген Alu не вызывал значительных нарушений в геноме, однако при ближайшем рассмотрении оказалось, что в соседнем участке хромосомы прячется второй элемент Alu. Выяснилось, что у шимпанзе, горилл и орангутанов два прыгающих гена Alu могут слипаться, образуя петлю, которая изменяет экспрессию TBXT. В результате закодированный этим геном белок brachyury будет немного короче исходного.
Генетики использовали технологию CRISPR, чтобы проверить, как укороченный белок brachyury, специфичный для человекообразных обезьян, может влиять на развитие хвоста у мышей. В эксперименте рождались мыши с хвостами разной длины — от нормальной до полного отсутствия. Таким образом, ученые предположили что для полного исчезновения хвоста нужно взаимодействие нескольких факторов, но вставка Alu в гене TBXT, видимо, послужила критическим толчком к исчезновению хвоста у предков человека, и случилось это около 25 млн лет назад, когда человекообразные обезьяны выделились в отдельную ветвь.
Одновременно в эксперименте выяснилось, что у генетически модифицированных мышей также был необычно высокий уровень дефектов в нервной трубке — развивающемся спинном мозге. В частности, расщепление позвоночника у плода (у человека такая болезнь называется spina bifida), когда спинной мозг не закрывается, и анэнцефалия, при которой отсутствуют части мозга и черепа. Такие состояния у человека относительно широко распространены, поражая одного из 1000 новорожденных.
“Очевидно, мы заплатили свою цену за потерю хвоста, и мы все еще чувствуем эхо тех событий, — говорит профессор Итаи Янаи, один из авторов исследования. — Но наши предки получили какую-то явную выгоду от потери хвоста, например, облегчение передвижения”. Тем не менее, пояснить связь между укороченным белком brachyury и дефектами нервной трубки еще предстоит. Некоторые люди рождаются с рудиментарными хвостами, и секвенирование их геномов может дать дополнительные подсказки.
Технология CRISPR — это самая перспективная технология биоинженерии, инструмент редактирования генома. Ученые заимствовали эту технологию у бактерий. Дело в том, что некоторые бактерии, защищась от атакующих их вирусов, научились «разрезать» специальными ферментами молекулу вирусной ДНК/РНК и встраивать эти кусочки в свою собственную ДНК, как в архив библиотеки, чтобы в следующий раз распознать вирус и уничтожить его. Участки ДНК бактерий, куда встраиваются кусочки чужеродного генетического материала, называются CRISPR. Биологи приспособили этот механизм для внесения изменений в ДНК растений, животных и даже людей. Такие изменения можно внести очень быстро — буквально за несколько дней, и сама технология относительно недорогая. Она потенциально позволяет излечивать многие генетические (и не только) болезни. Например, хроническую боль можно лечить «генетическими лекарствами», и довольно недорого.
По материалам Science.org
Читайте также:
Эпидемия коронавируса однажды уже поразила человечество 20 тысяч лет назад
Ученые обнаружили генетическую мутацию, ответственную за продолжительность сна
Туристическое страхование часто воспринимается как дополнительная трата средств, которой можно избежать. Однако, это ошибочное представление,…
Открытие учетной записи на игровой площадке обычно вознаграждается подарком. Иногда клиенту для этого достаточно завести…
В мире виноделия существует напиток, который завоевал сердца многих гурманов своим уникальным вкусом и ароматом.…
Рынок азартных развлечений в Украине активно развивается, что заметно по регулярному пополнению списка легальных онлайн-казино.…
Туризм ради игры становится всё более популярным среди путешественников по всему миру. Казино уже давно…
Рассказываем о бонусах Vbet. Мы расскажем о разных видах поощрений - как стандартных для всех…