• Физики впервые смогли охладить крупный объект почти до абсолютного нуля.Вокруг Света. Украина
    Наука
    Понедельник, 21 июня 2021

    Физики впервые смогли охладить крупный объект почти до абсолютного нуля

    В этом состоянии ученые смогут проводить тесты квантовой механики и квантовой гравитации, исследуя их границы с классической физикой, с тем, чтобы найти способ объединить их.

    Очень редко что-либо полностью неподвижно. Вся материя во Вселенной состоит из частиц, вибрирующих на разных частотах. Если же заставить их максимально замедлиться, они перейдут в так называемое основное квантовое состояние. В этом состоянии возможно экспериментально исследовать явления, описываемые квантовой механикой и квантовой гравитацией, ища их соответствия с классической физикой.

    Ранее такие исследования выполнялись только в наномасштабе. Теперь это впервые стало возможно на массивном объекте — 10-килограммовом оптомеханическом осцилляторе в гравитационно-волновой обсерватории LIGO  Массачусетского технологического института. Осциллятор был охлажден до такой степени, что стал предельно близок к своему основному квантовому состоянию. Его оставшаяся энергия была эквивалентна температуре 77 нанокельвин, лишь незначительно отличаясь от 0 К (-273,15 0 С).

    Отчет о полученных результатах опубликован в журнале Science.

    Как сообщают авторы исследования, осциллятор в 10 триллионов раз массивнее предыдущего рекордсмена среди самый крупных объектов, приведенных к основному квантовому состоянию.

    Это достижение позволит значительно улучшить чувствительность LIGO и даст возможность с большей точностью обнаруживать гравитационные волны. Но у него может быть и другое важное применение: изучение крупномасштабных квантовых явлений под воздействием гравитации.

    «Никто никогда не наблюдал, как гравитация действует на массивные квантовые состояния, — заявил директор проекта Вивишек Судхир. — Мы продемонстрировали, как привести объекты килограммового масштаба к их основному квантовому состоянию. Это открывает дверь для экспериментального исследования того, как гравитация может влиять на большие квантовые объекты, о чем до сих пор ученые только мечтали».

    Технология зеркал уже использовалась для того, чтобы лучше понять влияние квантовой механики в макроскопическом мире. В прошлом году эта же команда зафиксировала квантовые механические колебания зеркала под ударами фотонов.

    Темная материя — гипотетическая субстанция, возможно, составляющая до 85% процентов Вселенной. В США начали эксперимент по ее поиску с помощью сверхтонкого зеркала.

    По материалам IFLScience и Science Alert

    Читайте также:

    Что такое гравитация

    Какая температура в космосе?